Classifying Spaces and Fibrations of Simplicial Sheaves
نویسنده
چکیده
In this paper, we discuss the construction of classifying spaces of fibre sequences in model categories of simplicial sheaves. One construction proceeds via Brown representability and provides a classification in the pointed model category. The second construction is given by the classifying space of the monoid of homotopy self-equivalences of a simplicial sheaf and provides the unpointed classification.
منابع مشابه
Fibrations and Homotopy Colimits of Simplicial Sheaves
We show that homotopy pullbacks of sheaves of simplicial sets over a Grothendieck topology distribute over homotopy colimits; this generalizes a result of Puppe about topological spaces. In addition, we show that inverse image functors between categories of simplicial sheaves preserve homotopy pullback squares. The method we use introduces the notion of a sharp map, which is analogous to the no...
متن کاملA-homotopy theory of schemes
2 Homotopy category of a site with interval 2 2.1 Homotopy theory of simplicial sheaves . . . . . . . . . . . . . . 4 2.1.1 Simplicial sheaves . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 The simplicial model category structure . . . . . . . . 5 2.1.3 Local fibrations and resolution lemmas . . . . . . . . . 8 2.1.4 Homotopy limits and colimits. . . . . . . . . . . . . . . 12 2.1.5 Eilenber...
متن کاملPoincar E Sheaves on Topological Spaces
We deene the notion of a Poincar e complex of sheaves over a topological space. Global surgery invariants of spaces and maps are expressed as the assembly of locally deened surgery invariants. For simplicial complexes we recover the theory of Poincar e cycles of Ranicki. For more general spaces we obtain local surgery invariants in the absence of triangulations.
متن کاملSimplicial approximation
The purpose of this paper is to display a different approach to the construction of the homotopy theory of simplicial sets and the corresponding equivalence with the homotopy theory of topological spaces. This approach is an alternative to existing published proofs [4],[11], but is of a more classical flavour in that it depends heavily on simplicial approximation techniques. The verification of...
متن کاملGrothendieck fibrations and classifying spaces
Grothendieck fibrations have played an important role in homotopy theory. Among others, theywereused byThomason to describehomotopy colimits of small categories and byQuillen to derive long exact sequences of higher K-theory groups. We construct simplicial objects, namely the fibred and the cleaved nerve, to characterize the homotopy type of a Grothendieck fibration by using the additional stru...
متن کامل